The Sum Graph of Non-essential Submodules
نویسنده
چکیده مقاله:
Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natural numbers n, where Ω(M) is a connected graph, complete graph and has a cyclic. We prove that for a square-free natural number n, Ω(Z_n) is a complete graph. In particular, if n be the product of s distinct prime numbers, then Ω(Z_n) is the complete graph K_s. In addition, we introduce the extended graph Ω_T (M) of Ω(M) for some proper submodule T of M and we investigate about it. Dullay, we define the graph Λ(M) of module M with the set of vertices contain all nontrivial non-small submodules of M. Two distinct vertices N and K are adjacent in Λ(M) if and only if N∩K is a proper non-small submodule of M or N∩K=∘. We prove that, if M be a strongly comultiplication module, then there exists an isomorphism graph Ω(R)≅Λ(M) .
منابع مشابه
The sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملthe sum-annihilating essential ideal graph of a commutative ring
let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating ideal if there exists r ∈ R \ {0} such that Ir = (0) and an ideal I of R is called an essential ideal if I has non-zero intersection with every other non-zero ideal of R. The sum-annihilating essential ideal graph of R, denoted by AER, is a graph whose vertex set is the set of all non-zero annihilating i...
متن کاملEdge pair sum labeling of spider graph
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
متن کاملLaplacian Sum-Eccentricity Energy of a Graph
We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...
متن کاملPlanarity of Intersection Graph of submodules of a Module
Let $R$ be a commutative ring with identity and $M$ be an unitary $R$-module. The intersection graph of an $R$-module $M$, denoted by $Gamma(M)$, is a simple graph whose vertices are all non-trivial submodules of $M$ and two distinct vertices $N_1$ and $N_2$ are adjacent if and only if $N_1cap N_2neq 0$. In this article, we investigate the concept of a planar intersection graph and maximal subm...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 17
صفحات 121- 134
تاریخ انتشار 2019-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023